Applied Sciences (Mar 2012)

2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets

  • Teshome Senbeta,
  • Vadim N. Mal’nev

DOI
https://doi.org/10.3390/app2010220
Journal volume & issue
Vol. 2, no. 1
pp. 220 – 232

Abstract

Read online

The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers). Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.

Keywords