Pamukkale University Journal of Engineering Sciences (May 2016)
İşbirlikçi filtreleme için yeni tahminleme yöntemleri
Abstract
Firmalar, özellikle e-ticaret firmaları, öneri sistemleri kullanarak müşteri memnuniyetini, dolayısı ile karlılıklarını artırmayı hedeflemektedirler. Günümüzde Öneri Sistemleri yaygın olarak kullanılmakta ve bunları kullanan firmalara stratejik avantajlar sağlamaktadır. Bu sistemler farklı aşamalardan oluşurlar. İlk aşamada kullanıcı-ürün değerlendirme matrisi kullanılarak aktif kullanıcı ile diğer kullanıcılar arasındaki benzerlikler bulunur. Daha sonra bu benzerliklerden yola çıkılarak aktif kullanıcının yakın komşuları belirlenir. Tahmin hesaplama aşamasında, ilk adımda bulunan benzerlikler kullanılarak aktif kullanıcının yakın komşularının ağırlık vektörü oluşturulur. Komşular tahmin hesaplamasına bu ağırlıklar oranında etki ederler. Bu çalışmamızda işbirlikçi filtreleme algoritmalarının son basamağı olan tahmin hesaplama adımı için yeni yöntemler geliştirilmiştir. Bu yöntemlerin başarımı literatürde kullanılan değerlendirme metrikleri ile ölçülüp bu alanda yapılan çalışmalar ile karşılaştırılmıştır.