Ophthalmology and Therapy (Nov 2023)

Deep Transfer Learning for Ethnically Distinct Populations: Prediction of Refractive Error Using Optical Coherence Tomography

  • Rishabh Jain,
  • Tae Keun Yoo,
  • Ik Hee Ryu,
  • Joanna Song,
  • Nitin Kolte,
  • Ashiyana Nariani

DOI
https://doi.org/10.1007/s40123-023-00842-6
Journal volume & issue
Vol. 13, no. 1
pp. 305 – 319

Abstract

Read online

Abstract Introduction The mismatch between training and testing data distribution causes significant degradation in the deep learning model performance in multi-ethnic scenarios. To reduce the performance differences between ethnic groups and image domains, we built a deep transfer learning model with adaptation training to predict uncorrected refractive errors using posterior segment optical coherence tomography (OCT) images of the macula and optic nerve. Methods Observational, cross-sectional, multicenter study design. We pre-trained a deep learning model on OCT images from the B&VIIT Eye Center (Seoul, South Korea) (N = 2602 eyes of 1301 patients). OCT images from Poona Eye Care (Pune, India) were chronologically sorted into adaptation training data (N = 60 eyes of 30 patients) for transfer learning and test data (N = 142 eyes of 71 patients) for validation. Deep learning models were trained to predict spherical equivalent (SE) and mean keratometry (K) values via transfer learning for domain adaptation. Results Both adaptation models for SE and K were significantly better than those without adaptation (P < 0.001). In myopia/hyperopia classification, the model trained on circular optic disc OCT images yielded the best performance (accuracy = 74.7%). It also performed best in estimating SE with the lowest mean absolute error (MAE) of 1.58 D. For classifying the degree of corneal curvature, the optic nerve vertical algorithm performed best (accuracy = 65.7%). The optic nerve horizontal model achieved the lowest MAE (1.85 D) when predicting the K value. Saliency maps frequently highlighted the retinal nerve fiber layers. Conclusions Adaptation training via transfer learning is an effective technique for estimating refractive errors and K values using macular and optic nerve OCT images from ethnically heterogeneous populations. Further studies with larger sample sizes and various data sources are needed to confirm the feasibility of the proposed algorithm.

Keywords