Scientific Reports (Dec 2023)

Sustainable manufacturing through application of reconfigurable and intelligent systems in production processes: a system perspective

  • Marco Todescato,
  • Orjola Braholli,
  • Dmitry Chaltsev,
  • Ilaria Di Blasio,
  • Davide Don,
  • Georg Egger,
  • Julius Emig,
  • Gabriele Pasetti Monizza,
  • Pasqualina Sacco,
  • Dietmar Siegele,
  • Dieter Steiner,
  • Michael Terzer,
  • Michael Riedl,
  • Andrea Giusti,
  • Dominik Matt

DOI
https://doi.org/10.1038/s41598-023-49727-5
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Sustainable production aims at creating products from processes that minimize environmental impact, energy consumption and natural resources. Customers and markets are ever more leaning towards digital, custom, and flexible solutions with lower environmental impact. Hence, Industry 4.0 (I4.0) solutions are increasingly including social and environmental sustainability aspects. We focus on the realization of an infrastructure integrating industrially relevant application modules by combining system reconfigurability and artificial intelligence, towards sustainable production. To meet the final goal of sustainable production, we address four challenges considering flexibility and sustainability in production in a holistic way: (1) developing infrastructural and methodological tools to support companies to explore the potential of I4.0 towards sustainable production; (2) managing the configurability and customization possibilities of products; (3) effectively handling the flexibility provided by a production system with rapid reconfiguration capabilities; (4) integrating hardware and software flexibility by using reconfigurable robotics and machine learning methods. By developing and connecting different application modules, we obtain a physical demonstrator which represents on the one hand an exemplary scenario of reconfigurable and flexible production system; on the other, it enables new research activities and insights with a see, touch & feel approach for industrial and research realities.