Catalysis Communications (Dec 2023)
Incorporation of tin into zirconium phosphate to boost efficient conversion of trioses to lactic acid
Abstract
Dihydroxyacetone isomerization is a fundamental reaction for the production of lactic acid using different feedstocks. However, achieving excellent catalytic activity and resistance against leaching in water is challenging. Herein, we devised a Sn doped zirconium phosphate as effective heterogeneous catalyst. The incorporation of Sn could remarkably aggrandize the content of strong Lewis acid sites while retain relatively high surface areas. Gratifyingly, this catalyst exhibits enhanced activity and reusability for selective dihydroxyacetone isomerization into lactic acid with water as solvent. High lactic acid yields of 70.30 and 76.25% were achieved in water and water/acetone under optimal reaction conditions, respectively. The composition and activity of catalyst are reserved with reduced ions leaching. The excellent catalytic performance is attributed to accelerated conversion of pyruvaldehyde to lactic acid by the strong Lewis acid sites. Nuclear magnetic resonance revealed that the reaction is proceeded via a keto-enol tautomerization process.