Optimizing Josephson Junction Reproducibility in 30 kV E-Beam Lithography: An Analysis of Backscattered Electron Distribution
Arthur M. Rebello,
Lucas M. Ruela,
Gustavo Moreto,
Naiara Y. Klein,
Eldues Martins,
Ivan S. Oliveira,
João P. Sinnecker,
Francisco Rouxinol
Affiliations
Arthur M. Rebello
Coordenação de Matéria Condensada, Física Aplicada e Nanociência (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro 22290-180, RJ, Brazil
Lucas M. Ruela
Quantum Device Physics Laboratory, Universidade Estadual de Campinas (Unicamp), Instituto de Física Gleb Wataghin (IFGW), Campinas 13083-859, SP, Brazil
Gustavo Moreto
Quantum Device Physics Laboratory, Universidade Estadual de Campinas (Unicamp), Instituto de Física Gleb Wataghin (IFGW), Campinas 13083-859, SP, Brazil
Naiara Y. Klein
Coordenação de Matéria Condensada, Física Aplicada e Nanociência (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro 22290-180, RJ, Brazil
Eldues Martins
Leopoldo Américo Miguez de Mello Research, Development and Innovation Center (CENPES), Rio de Janeiro 21941-915, RJ, Brazil
Ivan S. Oliveira
Coordenação de Matéria Condensada, Física Aplicada e Nanociência (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro 22290-180, RJ, Brazil
João P. Sinnecker
Coordenação de Matéria Condensada, Física Aplicada e Nanociência (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro 22290-180, RJ, Brazil
Francisco Rouxinol
Quantum Device Physics Laboratory, Universidade Estadual de Campinas (Unicamp), Instituto de Física Gleb Wataghin (IFGW), Campinas 13083-859, SP, Brazil
This paper explores methods to enhance the reproducibility of Josephson junctions, which are crucial elements in superconducting quantum technologies, when employing the Dolan technique in 30 kV e-beam processes. The study explores the influence of dose distribution along the bridge area on reproducibility, addressing challenges related to fabrication sensitivity. Experimental methods include e-beam lithography, with electron trajectory simulations shedding light on the behavior of backscattered electrons. Wedescribe the fabrication of various Josephson junction geometries and analyze the correlation between the success rates of different lithography patterns and the simulated distribution of backscattered electrons. Our findings demonstrate a success rate of up to 96.3% for the double-resist 1-step low-energy e-beam lithography process. As a means of implementation strategy, we provide a geometric example that takes advantage of simulated stability regions to administer a controlled, uniform dose across the junction area, introducing novel features to overcome the difficulties associated with fabricating bridge-like structures.