Journal of Systemics, Cybernetics and Informatics (Oct 2012)

The Utilization of High-Frequency Gravitational Waves for Global Communications

  • Robert M L Baker,
  • Bonnie S. Baker

Journal volume & issue
Vol. 10, no. 5
pp. 14 – 21

Abstract

Read online

For over 1000 years electromagnetic radiation has been utilized for long-distance communication. Smoke signals, heliographs, telegraphs, telephones and radio have all served our previous communication needs. Nevertheless, electromagnetic radiation has one major difficulty: it is easily absorbed. In this paper we consider a totally different radiation, a radiation that is not easily absorbed: gravitational radiation. Such radiation, like gravity itself, is not absorbed by earth, water or any material substance. In particular we discuss herein means to generate and detect high-frequency gravitational waves or HFGWs, and how they can be utilized for communication. There are two barriers to their practical utilization: they are extremely difficult to generate (a large power required to generate very weak GWs) and it is extremely difficult to detect weak GWs. We intend to demonstrate theoretically in this paper their phase-coherent generation utilizing an array of in-phase microelectro-mechanical systems or MEMS resonator elements in which the HFGW flux is proportional to the square of the number of elements. This process solves the transmitter difficulty. Three HFGW detectors have previously been built; but their sensitivity is insufficient for meaningful HFGW reception; greater sensitivity is necessary. A new Li-Baker HFGW detector, discussed herein, is based upon a different measurement technique than the other detectors and is predicted to achieve a sensitivity to satisfy HFGW communication needs.

Keywords