Geoscientific Model Development (Apr 2016)

Stride Search: a general algorithm for storm detection in high-resolution climate data

  • P. A. Bosler,
  • E. L. Roesler,
  • M. A. Taylor,
  • M. R. Mundt

DOI
https://doi.org/10.5194/gmd-9-1383-2016
Journal volume & issue
Vol. 9, no. 4
pp. 1383 – 1398

Abstract

Read online

This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclone detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.