Entropy (Nov 2019)

The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design

  • Sergey Oladyshkin,
  • Wolfgang Nowak

DOI
https://doi.org/10.3390/e21111081
Journal volume & issue
Vol. 21, no. 11
p. 1081

Abstract

Read online

We show a link between Bayesian inference and information theory that is useful for model selection, assessment of information entropy and experimental design. We align Bayesian model evidence (BME) with relative entropy and cross entropy in order to simplify computations using prior-based (Monte Carlo) or posterior-based (Markov chain Monte Carlo) BME estimates. On the one hand, we demonstrate how Bayesian model selection can profit from information theory to estimate BME values via posterior-based techniques. Hence, we use various assumptions including relations to several information criteria. On the other hand, we demonstrate how relative entropy can profit from BME to assess information entropy during Bayesian updating and to assess utility in Bayesian experimental design. Specifically, we emphasize that relative entropy can be computed avoiding unnecessary multidimensional integration from both prior and posterior-based sampling techniques. Prior-based computation does not require any assumptions, however posterior-based estimates require at least one assumption. We illustrate the performance of the discussed estimates of BME, information entropy and experiment utility using a transparent, non-linear example. The multivariate Gaussian posterior estimate includes least assumptions and shows the best performance for BME estimation, information entropy and experiment utility from posterior-based sampling.

Keywords