Data Science Journal (Nov 2017)
Genomic Research Data Generation, Analysis and Sharing – Challenges in the African Setting
Abstract
Genomics is the study of the genetic material that constitutes the genomes of organisms. This genetic material can be sequenced and it provides a powerful tool for the study of human, plant and animal evolutionary history and diseases. Genomics research is becoming increasingly commonplace due to significant advances in and reducing costs of technologies such as sequencing. This has led to new challenges including increasing cost and complexity of data. There is, therefore, an increasing need for computing infrastructure and skills to manage, store, analyze and interpret the data. In addition, there is a significant cost associated with recruitment of participants and collection and processing of biological samples, particularly for large human genetics studies on specific diseases. As a result, researchers are often reluctant to share the data due to the effort and associated cost. In Africa, where researchers are most commonly at the study recruitment, determination of phenotypes and collection of biological samples end of the genomic research spectrum, rather than the generation of genomic data, data sharing without adequate safeguards for the interests of the primary data generators is a concern. There are substantial ethical considerations in the sharing of human genomics data. The broad consent for data sharing preferred by genomics researchers and funders does not necessarily align with the expectations of researchers, research participants, legal authorities and bioethicists. In Africa, this is complicated by concerns about comprehension of genomics research studies, quality of research ethics reviews and understanding of the implications of broad consent, secondary analyses of shared data, return of results and incidental findings. Additional challenges with genomics research in Africa include the inability to transfer, store, process and analyze large-scale genomics data on the continent, because this requires highly specialized skills and expensive computing infrastructure which are often unavailable. Recently initiatives such as H3Africa and H3ABioNet which aim to build capacity for large-scale genomics projects in Africa have emerged. Here we describe such initiatives, including the challenges faced in the generation, analysis and sharing of genomic data and how these challenges are being overcome.
Keywords