Metals (Dec 2021)
Electrodeposition of Indium from an Ionic Liquid Investigated by In Situ Electrochemical XPS
Abstract
The electrochemical behavior and electrodeposition of indium in an electrolyte composed of 0.1 mol/L InCl3 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSI) on a gold electrode were investigated. The cyclic voltammogram revealed several reduction and oxidation peaks, indicating a complex electrochemical behavior. In the cathodic regime, with the formation of an In-Au alloy, the reduction of In(III) to In(I) and of In(I) to In(0) takes place. In situ electrochemical X-ray photoelectron spectroscopy (XPS) was employed to investigate the reduction process by monitoring the oxidation states of the components during the cathodic polarization of 0.1 mol/L InCl3/[Py1,4]TFSI on a gold working electrode under ultra-high vacuum (UHV) conditions. The core electron binding energies of the IL components (C 1s, O 1s, F 1s, N 1s, and S 2p) shift almost linearly to more negative values as a function of the applied cell voltage. At −2.0 V versus Pt-quasi reference, In(I) was identified as the intermediate species during the reduction process. In the anodic regime, a strong increase in the pressure in the XPS chamber was recorded at a cell voltage of more than −0.5 V versus Pt quasi reference, which indicated, in addition to the oxidation reactions of In species, that the oxidation of Cl− occurs. Ex situ XPS and XRD results revealed the formation of metallic In and of an In-Au alloy.
Keywords