Bulletin of the National Research Centre (May 2021)

In vitro study of protective effect of Pterocarpus erinaceus Poir. stem bark and Amaranthus spinosus L. root extracts on cataractogenesis and glomerulopathy

  • Kokou Atchou,
  • Povi Lawson-Evi,
  • Kwashie Eklu-Gadegbeku

DOI
https://doi.org/10.1186/s42269-021-00552-8
Journal volume & issue
Vol. 45, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Cataracts and glomerulopathy are disabling complications of diabetes mellitus. The use of medicinal plants in the treatment of diabetes helps prevent or delay these complications. Pterocarpus erinaceus and Amaranthus spinosus are part of these medicinal plants used in traditional medicine to treat diabetes and its complications. The aim of this study was to evaluate in vitro the protective effect of the dried hydroethanolic extracts of the two plants against cataractogenesis and glomerulopathy induced by high glucose. Lenses and kidney fragments from Sprague–Dawley rats were cultured in artificial aqueous humor and in glomerular solution under high glucose, respectively. The extracts of the two plants at doses of 250 and 500 mg/kg bw were added to the culture medium and incubated for 72 h for the lenses and 96 h for the kidney fragments. Morphological and biochemical parameters were evaluated during the cultures. Results The lenses treated with extracts of both plants remained shiny and transparent in contrast to the opacity observed in toxic controls. The treatment by extract caused a significant (p < 0.001) decrease in malondialdehyde and a significant increase (p < 0.001) in glutathione and catalase levels in lenses and kidney fragments. The extracts also caused a significant increase (p < 0.0001) in glucose absorption in glomeruli and a decrease in tubular glucose reabsorption in kidney fragments. This led to a decrease in glucose in the incubation medium. Conclusion These findings showed that the dried hydroethanolic extract of P. erinaceus and A. spinosus can be used to reduce hyperglycemia effects by inhibiting oxidative stress pathways and then preventing or delaying the onset of cataracts and kidney failure in diabetes.

Keywords