BMC Cancer (Apr 2009)

KRAS mutation analysis in ovarian samples using a high sensitivity biochip assay

  • Reinthaller Alexander,
  • Horvat Reinhard,
  • Tong Dan,
  • Kriegshäuser Gernot,
  • Auner Veronika,
  • Mustea Alexander,
  • Zeillinger Robert

DOI
https://doi.org/10.1186/1471-2407-9-111
Journal volume & issue
Vol. 9, no. 1
p. 111

Abstract

Read online

Abstract Background Mutations in the KRAS gene are one of the most frequent genetic abnormalities in ovarian carcinoma. They are of renewed interest as new epidermal growth factor receptor (EGFR)-targeted therapies are being investigated for use in ovarian carcinoma. As KRAS mutations are associated with poor response and resistance to EGFR-targeting drugs, this study was conducted to obtain more information on the spectrum of KRAS mutations in ovarian carcinoma. Methods The presence of KRAS mutations in codon 12 and 13 was analyzed in frozen and formalin-fixed paraffin-embedded (FFPE) tissue with a low density biochip platform. 381 malignant (29 borderline malignancy, 270 primary carcinomas, and 82 recurrent carcinomas) and 22 benign tissue samples from a total of 394 patients were examined. KRAS mutational status of each sample was correlated with dignity, FIGO stage, grade, histology, and survival. Results KRAS mutations were found in 60 (15%) samples with 58 samples deriving from malignant tissue and 2 samples deriving from benign tissue. In 55 (92%) samples codon 12 was found to be mutated. Frozen and FFPE samples concurred with respect to KRAS mutation status. Conclusion KRAS mutation is a common event in ovarian cancer primarily in carcinomas of lower grade, lower FIGO stage, and mucinous histotype. The KRAS mutational status is no prognostic factor for patients treated with standard therapy. However, in line with experience from colorectal cancer and non-small-cell-lung cancer (NSCLC), it may be important for prediction of response to EGFR-targeted therapies.