Microorganisms (Jul 2020)

Multidrug-Resistant <em>Streptococcus agalactiae</em> Strains Found in Human and Fish with High Penicillin and Cefotaxime Non-Susceptibilities

  • Carmen Li,
  • Dulmini Nanayakkara Sapugahawatte,
  • Ying Yang,
  • Kam Tak Wong,
  • Norman Wai Sing Lo,
  • Margaret Ip

DOI
https://doi.org/10.3390/microorganisms8071055
Journal volume & issue
Vol. 8, no. 7
p. 1055

Abstract

Read online

Penicillin non-susceptible Streptococcus agalactiae (PEN-NS GBS) has been increasingly reported, with multidrug-resistant (MDR) GBS documented in Japan. Here we identified two PEN-NS GBS strains during our surveillance studies: one from a patient’s wound and the other from a tilapia. The patient’s GBS (H21) and fish GBS (F49) were serotyped and tested for antibiotic susceptibility. Whole-genome sequencing was performed to find the sequence type, antimicrobial resistance genes, and mutations in penicillin-binding proteins (PBPs) and fluoroquinolone (FQ) resistance genes. H21 and F49 belonged to ST651, serotype Ib, and ST7, serotype Ia, respectively. H21 showed PEN and cefotaxime minimum inhibitory concentrations (MICs) of 2.0 mg/L. F49 showed PEN MIC 0.5 mg/L. H21 was MDR with ermB, lnuB, tetS, ant6-Ia, sat4a, and aph3-III antimicrobial resistance genes observed. Alignment of PBPs showed the combination of PBP1B (A95D) and 2B mutations (V80A, S147A, S160A) in H21 and a novel mutation in F49 at N192S in PBP2B. Alignment of FQ-resistant determinants revealed mutation sites on gyrA, gyrB, and parC and E in H21. To our knowledge, this is the first report of GBS isolates with such high penicillin and cefotaxime MICs. This raises the concern of emergence of MDR and PEN-NS GBS in and beyond healthcare facilities.

Keywords