IEEE Photonics Journal (Jan 2016)

Efficient MMSE-SQRD-Based MIMO Decoder for SEFDM-Based 2.4-Gb/s-Spectrum-Compressed WDM VLC System

  • Yiguang Wang,
  • Yingjun Zhou,
  • Tao Gui,
  • Kangping Zhong,
  • Xian Zhou,
  • Liang Wang,
  • Alan Pak Tao Lau,
  • Chao Lu,
  • Nan Chi

DOI
https://doi.org/10.1109/JPHOT.2016.2596241
Journal volume & issue
Vol. 8, no. 4
pp. 1 – 9

Abstract

Read online

A spectrally efficient frequency division multiplexing (SEFDM) modulation has been proposed to improve system spectral efficiency, particularly for bandwidth-limited visible-light communication (VLC) systems. It employs non-orthogonal subcarriers to achieve bandwidth savings at the expense of serious intercarrier interference (ICI); thus, complicated detectors are required at the receiver to extract signals from the ICI. In this paper, we carry out an analysis of SEFDM modulation and establish a quasi-multiple-input multiple-output (MIMO) model for SEFDM-based systems. Based on this quasi-MIMO system model, for the first time, we propose to use an MMSE-sorted QR decomposition (MMSE-SQRD)-algorithm-based MIMO decoder to efficiently eliminate the ICI in a high-speed SEFDM-based wavelength-division multiplexing (WDM) VLC system. Using the MMSE-SQRD decoder, the WDM VLC system at an aggregate data rate of 2.4 Gb/s is experimentally demonstrated over a 2-m indoor free-space transmission, and up to 20% of bandwidth savings is achieved compared with that of the orthogonal frequency-division multiplexing (OFDM). The results clearly validate the effectiveness of the proposed MMSE-SQRD detector for SEFDM-based spectrum-compressed VLC system.

Keywords