Journal of NeuroEngineering and Rehabilitation (Jul 2022)
Gait biofeedback training in people with Parkinson’s disease: a pilot study
Abstract
Abstract Background People with Parkinson’s disease (PD) are at a high risk of falls, with ~ 60% experiencing a fall each year. Greater mediolateral head and pelvis motion during gait are known to increase the risk of falling in PD, however the ability to modify these aspects of gait has not been examined. Thus, this study aimed to examine whether mediolateral trunk, head and pelvis motion during walking could be successfully decreased in people with PD using real-time biofeedback. Methods Participants were provided with real-time biofeedback regarding their mediolateral trunk lean via a visual projection whilst walking along an 8-m indoor walkway. Using the feedback provided, they were asked to reduce the magnitude of their mediolateral trunk lean. Gait was recorded for four conditions (i) Baseline, (ii) Intervention, (iii) immediately Post-Intervention, and (iv) 1-week Follow-Up. Biomechanical variables associated with falls risk were compared between conditions, including normalised mediolateral motion, gait velocity and stride length. Results A reduction in mediolateral trunk lean, step length and gait velocity from Baseline to the Intervention and Post-intervention conditions was observed. Contrary to this, increased normalised ML pelvis and trunk motion was observed between the Baseline and Intervention conditions, but returned to Baseline levels in the Post-Intervention condition. Conclusions Results from the current study suggest that real-time visual biofeedback may be effective at modifying specific gait characteristics that are associated with falls in PD. Further research is required to better understand the influence of this intervention approach on falls incidence. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12620000994987. Registered 10 June 2020 - Retrospectively registered, https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=380324
Keywords