Molecules (Jan 2023)
Accuracy of Citrate Anticoagulant Amount, Volume, and Concentration in Evacuated Blood Collection Tubes Evaluated with UV Molecular Absorption Spectrometry on a Purified Water Model
Abstract
Citrate anticoagulant concentration affects the results of coagulation tests. Until now, the end user had no direct insight into the quality of evacuated blood collection tubes. By introducing an easy-to-perform UV spectrometric method for citrate determination on a purified water model, we enabled the evaluation of (1) the accuracy of the anticoagulant amount added into the tubes by a producer, (2) the accuracy of the volume of anticoagulant solution in the tube at the instant of examination, (3) the anticoagulant concentrations at a draw volume. We examined the Vacuette®, Greiner BIO-ONE, Vacutube, LT Burnik d.o.o., and BD Vacutainer® tubes. The anticoagulant amount added into the tubes during production had a relative bias between 3.2 and 23.0%. The anticoagulant volume deficiency at the instant of examination expressed as a relative bias ranged between −11.6 and −91.1%. The anticoagulant concentration relative bias after the addition of purified water in a volume that equalled a nominal draw volume extended from 9.3 to 25.7%. Draw-volume was mostly compliant during shelf life. Only Vacutube lost water over time. Contamination with potassium, magnesium, or both was observed in all the tubes but did not exceed a 0.21 mmol/L level. This study enables medical laboratories to gain insight into the characteristics of the citrate blood collection tubes as one of the preanalytical variables. In situations that require anticoagulant adjustment for accurate results, this can help make the right decisions. The methodology gives producers additional means of controlling the quality of their production process.
Keywords