Antioxidants (Aug 2024)

The SOD1 Inhibitor, LCS-1, Oxidizes H2S to Reactive Sulfur Species, Directly and Indirectly, through Conversion of SOD1 to an Oxidase

  • Kenneth R. Olson,
  • Tsuyoshi Takata,
  • Kasey J. Clear,
  • Yan Gao,
  • Zhilin Ma,
  • Ella Pfaff,
  • Karthik Mouli,
  • Thomas A. Kent,
  • Prentiss Jones,
  • Jon Fukuto,
  • Gang Wu,
  • Karl D. Straub

DOI
https://doi.org/10.3390/antiox13080991
Journal volume & issue
Vol. 13, no. 8
p. 991

Abstract

Read online

LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 reactions with H2S and SOD1 using thiol-specific fluorophores, liquid chromatography–mass spectrometry, electron paramagnetic resonance (EPR), UV–vis spectrometry, and oxygen consumption. We show that LCS-1 catalytically oxidizes H2S in buffer solutions to form RSS, namely per- and polyhydrosulfides (H2Sn, n = 2–6). These reactions consume oxygen and produce hydrogen peroxide, but they do not have an EPR signature, nor do they affect the UV–vis spectrum. Surprisingly, LCS-1 synergizes with SOD1, but not SOD2, to oxidize H2S to H2S3-6. LCS-1 forms monothiol adducts with H2S, glutathione (GSH), and cysteine (Cys), but not with oxidized glutathione or cystine; both thiol adducts inhibit LCS-1-SOD1 synergism. We propose that LCS-1 forms an adduct with SOD1 that disrupts the intramolecular Cys57-Cys146 disulfide bond and transforms SOD1 from a dismutase to an oxidase. This would increase cellular ROS and polysulfides, the latter potentially affecting cellular signaling and/or cytoprotection.

Keywords