Robotics (Mar 2022)

Gait Analysis for a Tiltrotor: The Dynamic Invertible Gait

  • Zhe Shen,
  • Takeshi Tsuchiya

DOI
https://doi.org/10.3390/robotics11020033
Journal volume & issue
Vol. 11, no. 2
p. 33

Abstract

Read online

A conventional feedback-linearization-based controller, when applied to a tiltrotor (eight inputs), results in extensive changes in tilting angles, which are not expected in practice. To solve this problem, we introduce the novel concept of “UAV gait” to restrict the tilting angles. The gait plan was initially used to solve the control problems in quadruped (four-legged) robots. Applying this approach, accompanied by feedback linearization, to a tiltrotor may give rise to the well-known non-invertible problem in the decoupling matrix. In this study, we explored invertible gait in a tiltrotor, and applied feedback linearization to stabilize the attitude and the altitude. The conditions necessary to achieve a full-rank decoupling matrix were deduced and simplified to near-zero roll and zero pitch. This paper proposes several invertible gaits to conduct an attitude–altitude control test. The accepted gaits within the region of interest were visualized. The simulation was conducted in Simulink, MATLAB. The results show promising responses in stabilizing attitude and altitude.

Keywords