Data in Brief (Feb 2021)

Characterization data of an (AlFeNiTiVZr)1-xCrx multi-principal element alloy continuous composition spread library

  • Benjamin Ruiz-Yi,
  • Travis Williams,
  • Jonathan Kenneth Bunn,
  • Fang Ren,
  • Naila Al Hasan,
  • Ichiro Takeuchi,
  • Jason Hattrick-Simpers,
  • Apurva Mehta

Journal volume & issue
Vol. 34
p. 106758

Abstract

Read online

The data provided in this article is related to the research article entitled “Phase stabilization and oxidation of a continuous composition spread multi-principal element (AlFeNiTiVZr)1-xCrx alloy” [1]. This data article describes the high-throughput synthesis and characterization processes of an (AlFeNiTiVZr)1-xCrx alloy system. Continuous composition spread (CCS) thin-film libraries were synthesized by co-depositing an AlFeNiTiVZr metal alloy target and Cr target via magnetron sputtering. Post-processing was performed on the sample libraries with a vacuum anneal at 873 K and an air anneal at 873 K. Compositional data was determined via WDS in order to verify parameters provided by an in-house sputter model. Crystallographic data was captured via synchrotron diffraction and diffractograms were compared as a function of the change in Cr concentration. These measurements were taken in order to observe phase behavior after oxidation throughout the composition library. Furthermore, vibrational spectrographic data is provided of the oxidized library to show surface speciation along the composition gradient of the alloy system. The structural and oxidative behavior of the (AlFeNiTiVZr)1-xCrx alloy can be analysed using the data provided in this article. Additionally, this characterization dataset can be utilized in machine learning algorithms for determining important features and parameters for future hypothesis generation of functional multi-principal element alloys (MPEAs).

Keywords