Respiratory Research (Jan 2023)

O-linked N-acetylglucosamine affects mitochondrial homeostasis by regulating Parkin-dependent mitophagy in hyperoxia-injured alveolar type II cells injury

  • Yu Xuefei,
  • Liu Dongyan,
  • Li Tianming,
  • Zheng Hejuan,
  • Fu Jianhua

DOI
https://doi.org/10.1186/s12931-022-02287-0
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background The level of linked N-acetylglucosamine (O-GlcNAc) has been proved to be a sensor of cell state, but its relationship with hyperoxia-induced alveolar type 2 epithelial cells injure and bronchopulmonary dysplasia (BPD) has not been clarified. In this study, we evaluated if these effects ultimately led to functional damage in hyperoxia-induced alveolar cells. Methods We treated RLE-6TN cells at 85% hyperoxia for 0, 24 and 48 h with Thiamet G (TG), an OGA inhibitor; OSMI-1 (OS), an OGT inhibitor; or with UDP-GlcNAc, which is involved in synthesis of O-GlcNAc as a donor. The metabolic rerouting, cell viability and apoptosis resulting from the changes in O-GlcNAc glycosyltransferase levels were evaluated in RLE-6TN cells after hyperoxia exposure. We constructed rat Park2 overexpression and knockdown plasmmids for in vitro verification and Co-immunoprecipitation corroborated the binding of Parkin and O-GlcNAc. Finally, we assessed morphological detection in neonatal BPD rats with TG and OS treatment. Results We found a decrease in O-GlcNAc content and levels of its metabolic enzymes in RLE-6TN cells under hyperoxia. However, the inhibition of OGT function with OSMI-1 ameliorated hyperoxia-induced lung epithelial cell injury, enhanced cell metabolism and viability, reduced apoptosis, and accelerated the cell proliferation. Mitochondrial homeostasis was affected by O-GlcNAc and regulated Parkin. Conclusion The results revealed that the decreased O-GlcNAc levels and increased O-GlcNAcylation of Parkin might cause hyperoxia-induced alveolar type II cells injurys.

Keywords