Aerospace (Oct 2023)

Optimal Sequencing of Arrival Flights at Metroplex Airports: A Study on Shared Waypoints Based on Path Selection and Rolling Horizon Control

  • Furong Jiang,
  • Zhaoning Zhang

DOI
https://doi.org/10.3390/aerospace10100881
Journal volume & issue
Vol. 10, no. 10
p. 881

Abstract

Read online

The civil aviation industry is experiencing significant growth in air traffic density within terminal areas, necessitating improved air traffic efficiency. In China’s pursuit of world-class airport clusters, operational complexities arise due to the co-location of these airports in the same terminal area airspace, resulting in lower operational efficiency. To mitigate congestion and flight delays, this study proposes an integrated model that considers multiple runways and route selections, accounting for actual route point restrictions. Utilizing actual operational data from Shanghai metroplex, the proposed model is validated. The study focuses on the airport metroplex system and presents a comprehensive mixed-integer programming (MIP) model for arrival sequencing, considering multiple airports, runways, and routes. The maximum landing efficiency is adopted as the objective function, optimizing arrival scheduling while considering time intervals, route selection, and landing constraints. The Multi-waypoint Rolling Horizon Control (MWRHC) algorithm is employed to tackle time-efficiency challenges, ensuring flight safety by continuous monitoring of flights in the terminal area. Comparative analysis reveals the algorithm’s superior optimization performance for single-runway airports compared to dual-runway airports. Overall, the proposed model and algorithm effectively improve the efficiency of multi-airport arrival scheduling in airport metroplex systems.

Keywords