A general methodology to access valuable 4-(phenylchalcogenyl)tetrazolo[1,5-a]quinolines was developed by the reaction of 2-azidobenzaldehyde with phenylchalcogenylacetonitriles (sulfur and selenium) in the presence of potassium carbonate (20 mol%) as a catalyst. The reactions were conducted using a mixture of dimethylsulfoxide and water (7:3) as solvent at 80 °C for 4 h. This new methodology presents a good functional group tolerance to electron-deficient and electron-rich substituents, affording a total of twelve different 4-(phenylchalcogenyl)tetrazolo[1,5-a]quinolines selectively in moderate to excellent yields. The structure of the synthesized 4-(phenylselanyl)tetrazolo[1,5-a]quinoline was confirmed by X-ray analysis.