Chemical and Biological Technologies in Agriculture (Aug 2024)
Comparison between imidacloprid effects on AChE and nAChRα1 in target Aphis craccivora and non-target Apis mellifera: experimental and theoretical approaches
Abstract
Abstract Background Neonicotinoids are widespread insecticides because of their potent effects against aphids and other piercing-sucking insects in addition to having high selectivity toward insects rather than vertebrates. However, they affect severely some non-target insects, mainly honeybee in a phenomenon called colony collapse disorder (CCD). Results Effects of imidacloprid (IMI), most used neonicotinoids, on aphid acetylcholinesterase (AChE), in vivo and in vitro were examined; besides, molecular modeling was used to investigate similarities and differences of AChE and nicotinic acetylcholine receptors α1-subunit (nAChRα1) in aphids, target insect, and honeybees, non-target insect. Results showed that aphid AChE was inhibited in vitro, with IC50 108.6 mg/L but not affected in vivo while the mortality was concentration-dependent with high toxicity (LC50 9.50 mg/L); in addition, aphid AChE was more inhibited, in vitro, but with much less effects, in vivo, than that of honeybees. These results indicate that AChE is not the main cause of the observed mortality, but it still has a role in insect resistance system with different responses in both insects. Molecular modeling showed high similarity in primary and secondary structures of AChE indicated by high identity (67%) and low gaps (1%); besides, the same template for both enzymes was auto-selected for homology. In addition, similar positions of the triad amino acids were found in AChE of both insects indicating high similarity. Conversely, the similarity in nAChRα1 in both insects is lower (50% identity and 9% gaps). These gaps (50 amino acids) are found in the intracellular large loop between TM3 and TM4 and account for the observed differences in the nAChRα1 binding sites of in both insects. Conclusion These observed variations in nAChRα1 structures and binding sites in different insect species can be used as good bases in designing new neonicotinoids that express high effects on target insects with better selectivity to minimize adverse effects on non-target organisms. Graphical Abstract
Keywords