Machines (Oct 2024)
Advancing UAV Sensor Fault Diagnosis Based on Prior Knowledge and Graph Convolutional Network
Abstract
Unmanned aerial vehicles (UAVs) are equipped with various sensors to facilitate control and navigation. However, UAV sensors are highly susceptible to damage under complex flight environments, leading to severe accidents and economic losses. Although fault diagnosis methods based on deep neural networks have been widely applied in the mechanical field, these methods often fail to integrate multi-source information and overlook the importance of system prior knowledge. As a result, this study employs a spatial-temporal difference graph convolutional network (STDGCN) for the fault diagnosis of UAV sensors, where the graph structure naturally organizes the diverse sensors. Specifically, a difference layer enhances the feature extraction capability of the graph nodes, and the spatial-temporal graph convolutional modules are designed to extract spatial-temporal dependencies from sensor data. Moreover, to ensure the accuracy of the association graph, this research introduces the UAV’s dynamic model as prior knowledge for constructing the association graph. Finally, diagnostic accuracies of 94.93%, 98.71%, and 92.97% were achieved on three self-constructed datasets. In addition, compared to commonly used data-driven approaches, the proposed method demonstrates superior feature extraction capabilities and achieves the highest diagnostic accuracy.
Keywords