Remote Sensing (Apr 2015)

Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

  • Minerva Singh,
  • Damian Evans,
  • Daniel A. Friess,
  • Boun Suy Tan,
  • Chan Samean Nin

DOI
https://doi.org/10.3390/rs70505057
Journal volume & issue
Vol. 7, no. 5
pp. 5057 – 5076

Abstract

Read online

This study develops a modelling framework for utilizing very high-resolution (VHR) aerial imagery for monitoring stocks of above-ground biomass (AGB) in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM), Gabor wavelets and Fourier-based textural ordination (FOTO)) were used in conjunction with two different machine learning (ML)-based regression techniques (support vector regression (SVR) and random forest (RF) regression). These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE) and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i) horizontal canopy variables (i.e., canopy cover and texture variables) plus vertical canopy height; (ii) horizontal variables only; and (iii) texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

Keywords