Frontiers in Cardiovascular Medicine (Oct 2018)

Extracellular Vesicles Secreted by Hypoxic AC10 Cardiomyocytes Modulate Fibroblast Cell Motility

  • Imelda Ontoria-Oviedo,
  • Imelda Ontoria-Oviedo,
  • Akaitz Dorronsoro,
  • Akaitz Dorronsoro,
  • Rafael Sánchez,
  • Rafael Sánchez,
  • Maria Ciria,
  • Maria Ciria,
  • Marta Gómez-Ferrer,
  • Marta Gómez-Ferrer,
  • Marc Buigues,
  • Elena Grueso,
  • Elena Grueso,
  • Sandra Tejedor,
  • Sandra Tejedor,
  • Francisco García-García,
  • Hernán González-King,
  • Hernán González-King,
  • Nahuel A. Garcia,
  • Esteban Peiró-Molina,
  • Pilar Sepúlveda,
  • Pilar Sepúlveda

DOI
https://doi.org/10.3389/fcvm.2018.00152
Journal volume & issue
Vol. 5

Abstract

Read online

Extracellular vesicles (EVs) are small membrane vesicles secreted by most cell types with important roles in cell-to-cell communication. To assess their relevance in the context of heart ischemia, EVs isolated from the AC10 ventricular cardiomyocyte cell line (CM-EVs), exposed to normoxia (Nx) or hypoxia (Hx), were incubated with fibroblasts (Fb) and endothelial cells (EC). CM-EVs were studied using electron microscopy, nanoparticle tracking analysis (NTA), western blotting and proteomic analysis. Results showed that EVs had a strong preference to be internalized by EC over fibroblasts, suggesting an active exosome-based communication mechanism between CM and EC in the heart. In Matrigel tube-formation assays, Hx CM-EVs were inferior to Nx CM-EVs in angiogenesis. By contrast, in a wound-healing assay, wound closure was faster in fibroblasts treated with Hx CM-EVs than with Nx CM-EVs, supporting a pro-fibrotic effect of Hx CM-EVs. Overall, these observations were consistent with the different protein cargoes detected by proteomic analysis under Nx and Hx conditions and the biological pathways identified. The paracrine crosstalk between CM-EVs, Fb, and EC in different physiological conditions could account for the contribution of CM-EVs to cardiac remodeling after an ischemic insult.

Keywords