Photonics (Jan 2022)
Slow Light Effect and Tunable Channel in Graphene Grating Plasmonic Waveguide
Abstract
A graphene plasmon waveguide composed of silicon grating substrate and a silica separator is proposed to generate the slow-light effect. A bias voltage is applied to tune the optical conductivity of graphene. The tunability of the slow-light working channel can be achieved due to the adjustable bias voltage. With an increase in the bias voltage, the working channel exhibited obvious linear blue-shift. The linear correlation coefficient between the working channel and the bias voltage was up to 0.9974. The average value of the normalized delay bandwidth product (NDBP) with different bias voltages was 3.61. In addition, we also studied the tunable group velocity at a specific working channel. Due to the tunability of this miniaturized waveguide structure, it can be used in a variety of applications including optical storage devices, optical buffers and optical switches.
Keywords