Frontiers in Oncology (May 2020)

Integration of Transcriptome and Metabolome Provides Unique Insights to Pathways Associated With Obese Breast Cancer Patients

  • Mohammed A. Hassan,
  • Mohammed A. Hassan,
  • Kaltoom Al-Sakkaf,
  • Mohammed Razeeth Shait Mohammed,
  • Ashraf Dallol,
  • Ashraf Dallol,
  • Jaudah Al-Maghrabi,
  • Alia Aldahlawi,
  • Alia Aldahlawi,
  • Sawsan Ashoor,
  • Mabrouka Maamra,
  • Jiannis Ragoussis,
  • Wei Wu,
  • Mohammad Imran Khan,
  • Mohammad Imran Khan,
  • Abdulrahman L. Al-Malki,
  • Abdulrahman L. Al-Malki,
  • Hani Choudhry,
  • Hani Choudhry

DOI
https://doi.org/10.3389/fonc.2020.00804
Journal volume & issue
Vol. 10

Abstract

Read online

Information regarding transcriptome and metabolome has significantly contributed to identifying potential therapeutic targets for the management of a variety of cancers. Obesity has profound effects on both cancer cell transcriptome and metabolome that can affect the outcome of cancer therapy. The information regarding the potential effects of obesity on breast cancer (BC) transcriptome, metabolome, and its integration to identify novel pathways related to disease progression are still elusive. We assessed the whole blood transcriptome and serum metabolome, as circulating metabolites, of obese BC patients compared them with non-obese BC patients. In these patients' samples, 186 significant differentially expressed genes (DEGs) were identified, comprising 156 upregulated and 30 downregulated. The expressions of these gene were confirmed by qRT-PCR. Furthermore, 96 deregulated metabolites were identified as untargeted metabolomics in the same group of patients. These detected DEGs and deregulated metabolites enriched in many cellular pathways. Further investigation, by integration analysis between transcriptomics and metabolomics data at the pathway levels, revealed seven unique enriched pathways in obese BC patients when compared with non-obese BC patients, which may provide resistance for BC cells to dodge the circulating immune cells in the blood. In conclusion, this study provides information on the unique pathways altered at transcriptome and metabolome levels in obese BC patients that could provide an important tool for researchers and contribute further to knowledge on the molecular interaction between obesity and BC. Further studies are needed to confirm this and to elucidate the exact underlying mechanism for the effects of obesity on the BC initiation or/and progression.

Keywords