Journal of Engineering and Applied Science (Mar 2022)
Multi-objective optimization of heat sink with multi-cross-ribbed-fins for a motor controller
Abstract
Abstract A novel multi-cross-ribbed-fin layout was proposed to supersede the original smooth fin to fulfill the lightweight requirement of the air-cooled heat sink for the electrical vehicle motor controller. The thermal design with multi-cross-ribbed-fins was optimized using the multi-objective optimization method to minimize the chip’s temperature rise and the weight of the heat sink simultaneously. The design variables are the number of multi-cross-ribbed-fins ranging from 12 to 24, the number of cross ribs on either side varying from 1 to 4, and cross rib height in the region of 1.00–2.50mm. The standard k-ε turbulence model was validated compared to the experimental data for the original heat sink with smooth fins. The Pareto front solution set was obtained by performing the mixed-level orthogonal design procedure with the numerical simulations, constructing the surrogated-based model with backpropagation neural net training, and implementing the genetic algorithm. The numerical results showed that the recommended optimal designs have the multi-cross-ribbed-fin number of 17–19, the number of cross ribs of 2–3, and a cross rib height of 2.13–2.50mm. The maximum decreases in the temperature rise and weight are 7.63% and 9.45%, respectively. For verifying the superiority of current optimal designs, one of the optimal designs of the heat sink, which yields comparative temperature rise of the chip but reduced weight, was selected to be experimentally tested and compared with the data for the original heat sink.
Keywords