Digital Chemical Engineering (Jun 2024)

The importance of process intensification in undergraduate chemical engineering education

  • Zong Yang Kong,
  • Eduardo Sánchez-Ramírez,
  • Jia Yi Sim,
  • Jaka Sunarso,
  • Juan Gabriel Segovia-Hernández

Journal volume & issue
Vol. 11
p. 100152

Abstract

Read online

This perspective article highlights our opinions on the imperative of incorporating Process Intensification (PI) into undergraduate chemical engineering education, recognizing its pivotal role in preparing future engineers for contemporary industrial challenges. The trajectory of PI, from historical milestones to its significance in advancing the United Nations’ Sustainable Development Goals (SDGs), reflects its intrinsic alignment with sustainability, resource efficiency, and environmental stewardship. Despite its critical relevance, the absence of dedicated PI courses in numerous undergraduate chemical engineering programs presents an opportunity for educational enhancement. An exploration of global PI-related courses reveals the potential of educational platforms to fill this void. To address this gap, we advocate for the introduction of a standalone PI course as a minor elective, minimizing disruptions to established curricula while acknowledging the scarcity of PI expertise. The challenges associated with PI integration encompass faculty workload, specialized expertise, curriculum content standardization, and industry alignment. Surmounting these challenges necessitates collaborative efforts among academia, industry stakeholders, and policymakers, emphasizing the manifold benefits of PI, faculty development initiatives, and the establishment of continuous improvement mechanisms. The incorporation of PI into curricula signifies a transformative approach, cultivating a cadre of innovative engineers poised to meet the demands of the evolving industrial landscape.

Keywords