Kemija u Industriji (Jul 2015)

Synthesis, Characterization and Sonocatalytic Activity of Co/N/Er<sup>3+</sup> : Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> /TiO2 Film for the Degradation of Organic Dyes

  • Wang L. ,
  • Ren J.-L.,
  • Hao C.-S.

DOI
https://doi.org/10.15255/KUI.2015.007
Journal volume & issue
Vol. 64, no. 7-8
pp. 339 – 345

Abstract

Read online

The sonocatalytic degradation of organic dyes (C.I. 50040, C.I. Reactive Red 1, C.I. Acid Orange 7) catalysed by Co/N/Er3+ : Y3Al5O12/TiO2 films was studied. For the preparation of Co/N/Er3+ : Y3Al5O12/TiO2 films, the sol-gel coating process was used. The phase composition, morphology, precursor at different temperatures and emitting light properties of the calcined powders were analysed by X-ray diffraction (XRD), absorption spectra and upconversion emission spectra. The X-ray diffraction of powder samples of Co/N/Er3+ : Y3Al5O12/TiO2 took on anatase mine peaks and upconversion luminous agent, respectively. Analysis of absorption spectra of amorphous Co/N/Er3+ : Y3Al5O12/TiO2 showed that doping N stretching vibration peak of water or hydroxyl adsorption, Co2+ ion had very strong absorption in 1.0–1.7 μm wavelength range, the transition luminescence of Er3+ ions was just on Co2+ ions absorption band. The emission spectrum indicated that Co/N/Er3+ : Y3Al5O12/TiO2 could launch green 500–560 nm and red 650–700 nm, 525, 550 and 660 nm peaks corresponding to 2H11/2, 4S3/2 → 4I15/2 and 4H9/2 → 4I15/2 transition of Er3+. Doping Co and N enhanced the upconversion luminescence and absorption effect. Sonocatalytic degradation effect of organic dyes loading Co/N/Er3+ : Y3Al5O12/TiO2 was better when ultrasonic intensity was equal to 15 W cm–2. The degradation ratios of aqueous solutions of these three kinds of organic dyes by ultrasonic irradiation were obviously lower than by ultrasonic irradiation together with Co/N/Er3+ : Y3Al5O12/TiO2 films in the same conditions. Degradation kinetics of organic dyes by ultrasonic irradiation and by ultrasonic irradiation cooperating with Co/N/Er3+ : Y3Al5O12/TiO2 films followed the first-order reaction.

Keywords