Cells (Dec 2022)
Pharmacological Profile of MP-101, a Novel Non-racemic Mixture of R- and S-dimiracetam with Increased Potency in Rat Models of Cognition, Depression and Neuropathic Pain
Abstract
The racemic mixture dimiracetam negatively modulates NMDA-induced glutamate release in rat spinal cord synaptosomal preparations and is orally effective in models of neuropathic pain. In this study, we compared the effects of dimiracetam, its R- or S-enantiomers, and the R:S 3:1 non-racemic mixture (MP-101). In vitro, dimiracetam was more potent than its R- or S-enantiomers in reducing the NMDA-induced [3H]D-aspartate release in rat spinal cord synaptosomes. Similarly, acute oral administration of dimiracetam was more effective than a single enantiomer in the sodium monoiodoacetate (MIA) paradigm of painful osteoarthritis. Then, we compared the in vitro effects of a broad range of non-racemic enantiomeric mixtures on the NMDA-induced [3H]D-aspartate release. Dimiracetam was a more potent blocker than each isolated enantiomer but the R:S 3:1 non-racemic mixture (MP-101) was even more potent than dimiracetam, with an IC50 in the picomolar range. In the chronic oxaliplatin-induced neuropathic pain model, MP-101 showed a significantly improved anti-neuropathic profile, and its effect continued one week after treatment suspension. MP-101 also performed better than dimiracetam in animal models of cognition and depression. Based on the benign safety and tolerability profile previously observed with racemic dimiracetam, MP-101 appears to be a novel, promising clinical candidate for the prevention and treatment of several neuropathic and neurological disorders.
Keywords