Nature Communications (Mar 2025)

Mapping variants in thyroid hormone transporter MCT8 to disease severity by genomic, phenotypic, functional, structural and deep learning integration

  • Stefan Groeneweg,
  • Ferdy S. van Geest,
  • Mariano Martín,
  • Mafalda Dias,
  • Jonathan Frazer,
  • Carolina Medina-Gomez,
  • Rosalie B. T. M. Sterenborg,
  • Hao Wang,
  • Anna Dolcetta-Capuzzo,
  • Linda J. de Rooij,
  • Alexander Teumer,
  • Ayhan Abaci,
  • Erica L. T. van den Akker,
  • Gautam P. Ambegaonkar,
  • Christine M. Armour,
  • Iiuliu Bacos,
  • Priyanka Bakhtiani,
  • Diana Barca,
  • Andrew J. Bauer,
  • Sjoerd A. A. van den Berg,
  • Amanda van den Berge,
  • Enrico Bertini,
  • Ingrid M. van Beynum,
  • Nicola Brunetti-Pierri,
  • Doris Brunner,
  • Marco Cappa,
  • Gerarda Cappuccio,
  • Barbara Castellotti,
  • Claudia Castiglioni,
  • Krishna Chatterjee,
  • Alexander Chesover,
  • Peter Christian,
  • Jet Coenen-van der Spek,
  • Irenaeus F. M. de Coo,
  • Regis Coutant,
  • Dana Craiu,
  • Patricia Crock,
  • Christian DeGoede,
  • Korcan Demir,
  • Cheyenne Dewey,
  • Alice Dica,
  • Paul Dimitri,
  • Marjolein H. G. Dremmen,
  • Rachana Dubey,
  • Anina Enderli,
  • Jan Fairchild,
  • Jonathan Gallichan,
  • Luigi Garibaldi,
  • Belinda George,
  • Evelien F. Gevers,
  • Erin Greenup,
  • Annette Hackenberg,
  • Zita Halász,
  • Bianka Heinrich,
  • Anna C. Hurst,
  • Tony Huynh,
  • Amber R. Isaza,
  • Anna Klosowska,
  • Marieke M. van der Knoop,
  • Daniel Konrad,
  • David A. Koolen,
  • Heiko Krude,
  • Abhishek Kulkarni,
  • Alexander Laemmle,
  • Stephen H. LaFranchi,
  • Amy Lawson-Yuen,
  • Jan Lebl,
  • Selmar Leeuwenburgh,
  • Michaela Linder-Lucht,
  • Anna López Martí,
  • Cláudia F. Lorea,
  • Charles M. Lourenço,
  • Roelineke J. Lunsing,
  • Greta Lyons,
  • Jana Krenek Malikova,
  • Edna E. Mancilla,
  • Kenneth L. McCormick,
  • Anne McGowan,
  • Veronica Mericq,
  • Felipe Monti Lora,
  • Carla Moran,
  • Katalin E. Muller,
  • Lindsey E. Nicol,
  • Isabelle Oliver-Petit,
  • Laura Paone,
  • Praveen G. Paul,
  • Michel Polak,
  • Francesco Porta,
  • Fabiano O. Poswar,
  • Christina Reinauer,
  • Klara Rozenkova,
  • Rowen Seckold,
  • Tuba Seven Menevse,
  • Peter Simm,
  • Anna Simon,
  • Yogen Singh,
  • Marco Spada,
  • Milou A. M. Stals,
  • Merel T. Stegenga,
  • Athanasia Stoupa,
  • Gopinath M. Subramanian,
  • Lilla Szeifert,
  • Davide Tonduti,
  • Serap Turan,
  • Joel Vanderniet,
  • Adri van der Walt,
  • Jean-Louis Wémeau,
  • Anne-Marie van Wermeskerken,
  • Jolanta Wierzba,
  • Marie-Claire Y. de Wit,
  • Nicole I. Wolf,
  • Michael Wurm,
  • Federica Zibordi,
  • Amnon Zung,
  • Nitash Zwaveling-Soonawala,
  • Fernando Rivadeneira,
  • Marcel E. Meima,
  • Debora S. Marks,
  • Juan P. Nicola,
  • Chi-Hua Chen,
  • Marco Medici,
  • W. Edward Visser

DOI
https://doi.org/10.1038/s41467-025-56628-w
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Predicting and quantifying phenotypic consequences of genetic variants in rare disorders is a major challenge, particularly pertinent for ‘actionable’ genes such as thyroid hormone transporter MCT8 (encoded by the X-linked SLC16A2 gene), where loss-of-function (LoF) variants cause a rare neurodevelopmental and (treatable) metabolic disorder in males. The combination of deep phenotyping data with functional and computational tests and with outcomes in population cohorts, enabled us to: (i) identify the genetic aetiology of divergent clinical phenotypes of MCT8 deficiency with genotype-phenotype relationships present across survival and 24 out of 32 disease features; (ii) demonstrate a mild phenocopy in ~400,000 individuals with common genetic variants in MCT8; (iii) assess therapeutic effectiveness, which did not differ among LoF-categories; (iv) advance structural insights in normal and mutated MCT8 by delineating seven critical functional domains; (v) create a pathogenicity-severity MCT8 variant classifier that accurately predicted pathogenicity (AUC:0.91) and severity (AUC:0.86) for 8151 variants. Our information-dense mapping provides a generalizable approach to advance multiple dimensions of rare genetic disorders.