Nanomaterials (Apr 2022)

Solvent Etching Process for Graphitic Carbon Nitride Photocatalysts Containing Platinum Cocatalyst: Effects of Water Hydrolysis on Photocatalytic Properties and Hydrogen Evolution Behaviors

  • Thi Van Anh Hoang,
  • Thi Kim Anh Nguyen,
  • Duc Quang Dao,
  • Phuong Anh Nguyen,
  • Dong Hwi Jeong,
  • Eun Woo Shin

DOI
https://doi.org/10.3390/nano12071188
Journal volume & issue
Vol. 12, no. 7
p. 1188

Abstract

Read online

In this study, we synthesized Pt/g-C3N4 photocatalysts modified by a solvent etching process where ethanol (Pt/CN0), water (Pt/CN100), and a 50:50 mixture (Pt/CN50) were used as a solvent, and investigated the optimal properties of g-C3N4 to prepare the best Pt/g-C3N4 for photocatalytic hydrogen evolution. From diverse characterizations, water was proven to be a stronger solvent agent, resulting in not only the introduction of more O-functional groups onto the g-C3N4 surface, but also the degradation of a regular array of tri-s-triazine units in the g-C3N4 structure. While the addition of O-functional groups positively influenced the oxidation state of the Pt cocatalyst and the hydrogen production rate, the changes to g-C3N4 structure retarded charge transfer on its surface, inducing negative effects such as fast recombination and less oxidized Pt species. Pt/CN50 that was synthesized with the 50:50 solvent mixture exhibited the highest hydrogen production rate of 590.9 µmol g−1h−1, while the hydrogen production rates of Pt/CN0 (with pure ethanol solvent) and Pt/CN100 (with pure water solvent) were 462.7, and 367.3 µmol g−1h−1, respectively.

Keywords