Heliyon (Dec 2023)
Alternative immune checkpoints in immunoregulatory profile of cancer stem cells
Abstract
Tumor-mediated bypass of immune checkpoint inhibitor (ICI) therapy with anti-programmed death-1 (PD-1), anti-programmed death-ligand 1 (PD-L1, also called B7–H1 or CD274) or anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is a challenge of current years in the area of cancer immunotherapy. Alternative immune checkpoints (AICs) are molecules beyond the common PD-1, PD-L1 or CTLA-4, and are upregulated in patients who show low/no ICI responses. These are members of B7 family including B7–H2 (ICOS-L), B7–H3 (CD276), B7–H4 (B7x), V-domain immunoglobulin suppressor of T cell activation (VISTA), B7–H6, HHLA2 (B7–H5/B7–H7) and catabolic enzymes like indoleamine 2,3-dioxygenase 1 (IDO1), and others that are also contributed to the regulation of tumor immune microenvironment (TIME). There is also strong evidence supporting the implication of AICs in regulation of cancer stemness and expanding the population of cancer stem cells (CSCs). CSCs display immunoregulatory capacity and represent multiple immune checkpoints either on their surface or inside. Besides, they are active promoters of resistance to the common ICIs. The aim of this review is to investigate interrelations between AICs with stemness and differentiation profile of cancer. The key message of this paper is that targeted checkpoints can be selected based on their impact on CSCs along with their effect on immune cells. Studies published so far mainly focused on immune cells as a target for anti-checkpoints. Ex vivo engineering of extracellular vesicles (EVs) equipped with CSC-targeted anti-checkpoint antibodies is without a doubt a key therapeutic target that can be under consideration in future research.