PLoS ONE (Jan 2020)

Toxicodendron vernicifluum Stokes extract inhibits solid tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice.

  • Hyun Sook Lee,
  • Jae In Jung,
  • Kyeong-Hee Kim,
  • Sang Jae Park,
  • Eun Ji Kim

DOI
https://doi.org/10.1371/journal.pone.0241805
Journal volume & issue
Vol. 15, no. 11
p. e0241805

Abstract

Read online

Toxicodendron vernicifluum Stokes has long been used as a food supplement and traditional herbal medicine in East Asia. We applied a new extraction method to produce Toxicodendron vernicifluum Stokes extract (TVSE), that doesn't contain urushiol (an allergenic toxin) but dose have higher levels of some flavonoids such as fustin and fisetin. This study was conducted to investigate the anticancer effects of TVSE in an in vivo system. Fifty BALB/c mice were acclimated for one week and then injected with 4T1 murine mammary carcinoma cells in mammary fat pads. After 7 days, the mice were randomly divided into 5 groups, and orally administered with 0, 50, 100, 200 or 400 mg of TVSE/kg body weight (BW)/day for 20 days. TVSE reduced tumor volume and weight dose-dependently. The expression of Ki67 was significantly reduced and the number of TUNEL-positive apoptotic cells was significantly increased in the TVSE-treated group over 100 mg/kg BW/day. While tumor nodules were not found in the liver, but only in lungs, the number of tumor nodules was reduced in a dose-dependent manner in the TVSE treated groups compared to the control group. In breast tumors, expression of platelet endothelial cell adhesion molecule (PECAM-1) and vascular endothelial growth factor (VEGF) was reduced by TVSE treatment. TVSE treatment significantly suppressed mRNA expression in tumors of matrix metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-1, urokinase-type plasminogen activator (uPA), intercellular adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1 while increasing plasminogen activator inhibitor (PAI)-1. These results suggest that TVSE is potentially beneficial for the suppression of breast cancer growth and its-associated lung metastasis.