Translational Neurodegeneration (Jun 2022)

N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer’s pathophysiology

  • Agueda Rostagno,
  • Erwin Cabrera,
  • Tammaryn Lashley,
  • Jorge Ghiso

DOI
https://doi.org/10.1186/s40035-022-00303-3
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Background The molecular heterogeneity of Alzheimer’s amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer’s disease (AD). Methods Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6—specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42—in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. Results All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts—particularly of Aβ4-40 and Aβ4-42—consistently exhibited enhanced brain retention. Conclusions The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.

Keywords