Advanced Nonlinear Studies (Mar 2024)

The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients

  • Ikoma Norihisa,
  • Yamanobe Mizuki

DOI
https://doi.org/10.1515/ans-2022-0056
Journal volume & issue
Vol. 24, no. 2
pp. 477 – 509

Abstract

Read online

The existence of L 2–normalized solutions is studied for the equation −Δu+μu=f(x,u) inRN,∫RNu2dx=m. $-{\Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in} {\mathbf{R}}^{N},\quad {\int }_{{\mathbf{R}}^{N}}{u}^{2} \mathrm{d}x=m.$ Here m > 0 and f(x, s) are given, f(x, s) has the L 2-subcritical growth and (μ, u) ∈ R × H 1(R N) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with L 2 constraint: mountain pass and symmetric mountain pass approaches,” Adv. Nonlinear Stud., vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with L 2 constraint: mountain pass and symmetric mountain pass approaches,” Adv. Nonlinear Stud., vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.

Keywords