International Journal of Molecular Sciences (Mar 2021)

Design and In Vitro Evaluation of Splice-Switching Oligonucleotides Bearing Locked Nucleic Acids, Amido-Bridged Nucleic Acids, and Guanidine-Bridged Nucleic Acids

  • Takenori Shimo,
  • Yusuke Nakatsuji,
  • Keisuke Tachibana,
  • Satoshi Obika

DOI
https://doi.org/10.3390/ijms22073526
Journal volume & issue
Vol. 22, no. 7
p. 3526

Abstract

Read online

Our group previously developed a series of bridged nucleic acids (BNAs), including locked nucleic acids (LNAs), amido-bridged nucleic acids (AmNAs), and guanidine-bridged nucleic acids (GuNAs), to impart specific characteristics to oligonucleotides such as high-affinity binding and enhanced enzymatic resistance. In this study, we designed a series of LNA-, AmNA-, and GuNA-modified splice-switching oligonucleotides (SSOs) with different lengths and content modifications. We measured the melting temperature (Tm) of each designed SSO to investigate its binding affinity for RNA strands. We also investigated whether the single-stranded SSOs formed secondary structures using UV melting analysis without complementary RNA. As a result, the AmNA-modified SSOs showed almost the same Tm values as the LNA-modified SSOs, with decreased secondary structure formation in the former. In contrast, the GuNA-modified SSOs showed slightly lower Tm values than the LNA-modified SSOs, with no inhibition of secondary structures. We also evaluated the exon skipping activities of the BNAs in vitro at both the mRNA and protein expression levels. We found that both AmNA-modified SSOs and GuNA-modified SSOs showed higher exon skipping activities than LNA-modified SSOs but each class must be appropriately designed in terms of length and modification content.

Keywords