Applied Sciences (Oct 2020)

Printability of the Screen-Printed Strain Sensor with Carbon Black/Silver Paste for Sensitive Wearable Electronics

  • Xue Qi,
  • Heebo Ha,
  • Byungil Hwang,
  • Sooman Lim

DOI
https://doi.org/10.3390/app10196983
Journal volume & issue
Vol. 10, no. 19
p. 6983

Abstract

Read online

Printing technology enables not only high-volume, multipurpose, low-impact, low-cost manufacturing, but also the introduction of flexible electronic devices, such as displays, actuators, and sensors, to a wide range of consumer markets. Consequently, in the past few decades, printed electronic products have attracted considerable interest. Although flexible printed electronic products are attracting increasing attention from the scientific and industrial communities, a systematic study on their sensing performance based on printability has not been reported so far. In this study, carbon black/Ag nanocomposites were utilized as pastes for a flexible wearable strain sensor. The effects of the rheological property of the pastes and the pattern dimensions of the printed electrodes on the sensor’s performance were investigated. Consequently, the printed sensor demonstrated a high gauge factor of 444.5 for an applied strain of 0.6% to 1.4% with a durability of 1000 cycles and a linearity of R2 = 0.9974. The sensor was also stable under tough environmental conditions.

Keywords