Layer-Resolving Terahertz Light-Field Imaging Based on Angular Intensity Filtering Method
Nanfang Lyu,
Jian Zuo,
Yuanmeng Zhao,
Cunlin Zhang
Affiliations
Nanfang Lyu
Beijing Advanced Innovation Center for Imaging Technology, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Department of Physics, Capital Normal University, Beijing 100048, China
Jian Zuo
Beijing Advanced Innovation Center for Imaging Technology, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Department of Physics, Capital Normal University, Beijing 100048, China
Yuanmeng Zhao
Beijing Advanced Innovation Center for Imaging Technology, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Department of Physics, Capital Normal University, Beijing 100048, China
Cunlin Zhang
Beijing Advanced Innovation Center for Imaging Technology, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Department of Physics, Capital Normal University, Beijing 100048, China
Terahertz focal plane array imaging methods, direct camera imaging and conventional light field imaging methods are incapable of resolving and separating layers of multilayer objects. In this paper, for the purpose of fast, high-resolution and layer-resolving imaging of multilayer structures with different reflection characteristics, a novel angular intensity filtering (AIF) method based on terahertz light-field imaging is purposed. The method utilizes the extra dimensional information from the 4D light field and the reflection characteristics of the imaging object, and the method is capable to resolve and reconstruct layers individually. The feasibility of the method is validated by experiment on both “idealized” and “practical” multilayer samples, and the advantages in performance of the method are proven by quantitative comparison with conventional methods.