Materials (Sep 2022)

Surface Modification-Dominated Space-Charge Behaviors of LDPE Films: A Role of Charge Injection Barriers

  • Yuanwei Zhu,
  • Haopeng Chen,
  • Yu Chen,
  • Guanghao Qu,
  • Guanghao Lu,
  • Daomin Min,
  • Yongjie Nie,
  • Shengtao Li

DOI
https://doi.org/10.3390/ma15176095
Journal volume & issue
Vol. 15, no. 17
p. 6095

Abstract

Read online

Gradually increasing power transmission voltage requires an improved high-voltage capability of polymeric insulating materials. Surface modification emerges as an easily accessible approach in enhancing breakdown and flashover performances due to the widely acknowledged modification of space-charge behaviors. However, as oxidation and fluorination essentially react within a limited depth of 2 μm underneath polymer surfaces, the nature of such bulk space-charge modulation remains a controversial issue, and further investigation is needed to realize enhancement of insulating performance. In this work, the surface oxidation-dependent space-charge accumulation in LDPE film was found to be dominated by an electrode/polymer interfacial barrier, but not by the generation of bulk charge traps. Through quantitative investigation of space-charge distributions along with induced electric field distortion, the functions of surface oxidation on the interfacial barrier of a typical dielectric polymer, LDPE, is discussed and linked to space-charge behaviors. As the mechanism of surface modification on space-charge behaviors is herein proposed, space-charge accumulation can be effectively modified by selecting an appropriate surface modification method, which consequentially benefits breakdown and flashover performances of polymeric insulating films for high-voltage applications.

Keywords