Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi (Nov 2021)

Investigating Thermal and Fast Neutron Shielding Properties of B4C, B2O3, Sm2O3, and Gd2O3 doped Polymer Matrix Composites using Monte Carlo Simulations

  • Yasin Gaylan,
  • Ahmet Bozkurt,
  • Barış Avar

DOI
https://doi.org/10.29233/sdufeffd.933338
Journal volume & issue
Vol. 16, no. 2
pp. 490 – 499

Abstract

Read online

In this study, thermal (2.53*10-8 MeV) and fast (2 MeV) neutron total macroscopic cross-sections of paraffin, polycarbonate, and polyester matrix polymers doped with B4C, B2O3, Sm2O3, and Gd2O3 (at weight percentages of 5%, 10%, 15%, 20%, and 25%) were computed by using Monte Carlo simulations. Additionally, the macroscopic effective removal cross-section ) of fast neutrons was theoretically computed based on the mass removal cross-section values ) for various elements in polymers and additives. The obtained results show that the highest thermal neutron total macroscopic cross-section was obtained in polycarbonate doped with Gd2O3, and the highest fast neutron total macroscopic cross-section was observed in paraffin doped with Sm2O3. Besides, the paraffin provided the highest fast neutron total macroscopic cross-section for all additives. The results of this study provide a good understanding of shielding properties of paraffin, polycarbonate, and polyester matrix polymers doped with B4C, B2O3, Sm2O3, and Gd2O3 against thermal and fast neutrons.

Keywords