IEEE Access (Jan 2024)
Subject Conditioning for Motor Imagery Using Attention Mechanism
Abstract
This paper presents an advanced approach for enhancing electroencephalography (EEG) classification accuracy in motor tasks through the integration of subject-specific features. Recognizing the significant challenge posed by inter-subject variability in EEG signal processing, our method focuses on addressing individual differences in EEG data. The proposed ‘Attentive Subject Fusion’ method leverages power spectral density characteristics to encode subject-specific information using a single-layer perceptron. Subsequently, an attention mechanism integrates these features with the actual EEG signal processed by an M-ShallowConvNet.Empirical evaluations demonstrate that incorporating subject-specific features markedly improves the performance of deep learning models in EEG motor task classification.
Keywords