The present work addresses the issues related to the capacity fading of spinel LiMn2O4, such as Mn leaching and Jahn–Teller distortion and suggests an advanced TiN-coated LiAl0.1Mn1.9O4 (LAMO) cathode material as an electrode for lithium-ion batteries. TiN coating layers with the same thickness but a different porosity cover the LiAl0.1Mn1.9O4 electrode via reactive magnetron sputtering, and present promising electrochemical behavior. In contrast with the pristine LiAl0.1Mn1.9O4, the dense TiN-coated LiAl0.1Mn1.9O4 electrode demonstrates a remarkable long-term cycling by reducing the contact area of the electrode/electrolyte interface, resulting in structure stabilization.