EJNMMI Research (Oct 2024)
Preclinical evaluation and first-in-human study of [18F]AlF-FAP-NUR for PET imaging cancer-associated fibroblasts
Abstract
Abstract Background Fibroblast activation protein (FAP) has gained attention as a promising molecular target with potential utility for cancer diagnosis and therapy. [68Ga]Ga-labeled FAP-targeting peptides have been successfully applied to positron emission tomography (PET) imaging of various tumor types. To meet the applicable demand for peptide-based FAP tracers with high patient throughput, we herein report the radiosynthesis, preclinical evaluation, and the first-in-human imaging of a novel [18F]F-labeled FAP-targeting peptide. Results [18F]AlF-FAP-NUR was automatedly prepared within 45 min with a non-decay corrected radiochemical yield of 18.73 ± 4.25% (n = 3). Compared to [68Ga]Ga-FAP-2286, the [18F]F-labeled peptide demonstrated more rapid, higher levels of cellular uptake and internalization, and lower levels of cellular efflux in HT1080-FAP cells. Micro-PET imaging and biodistribution studies conducted on xenograft mice models revealed a similar distribution pattern between the two tracers. However, [18F]AlF-FAP-NUR demonstrated significantly higher tumor-specific uptake resulting in improved Tumor-Background Ratios (TBRs). In the patients, a significant accumulation of [18F]AlF-FAP-NUR was found in the primary tumor. High uptake of the tracer within the bladder indicated that its major route of excretion was through urine. Conclusions Based on the physical imaging properties and longer half-life of [18F]F, [18F]AlF-FAP-NUR exhibited promising characteristics such as enhanced tumor-specific accumulation and elevated TBRs, which made it a viable candidate for further clinical investigation. Trial registration www.Chictr.org.cn , ChiCTR2300076976 Retrospectively registered 25 October 2023. at, URL: https://www.chictr.org.cn/showproj.html?proj=206753 .
Keywords