Nanomaterials (Jul 2022)

AlGaN Quantum Disk Nanorods with Efficient UV-B Emission Grown on Si(111) Using Molecular Beam Epitaxy

  • Dongqi Zhang,
  • Tao Tao,
  • Haiding Sun,
  • Siqi Li,
  • Hongfeng Jia,
  • Huabin Yu,
  • Pengfei Shao,
  • Zhenhua Li,
  • Yaozheng Wu,
  • Zili Xie,
  • Ke Wang,
  • Shibing Long,
  • Bin Liu,
  • Rong Zhang,
  • Youdou Zheng

DOI
https://doi.org/10.3390/nano12142508
Journal volume & issue
Vol. 12, no. 14
p. 2508

Abstract

Read online

AlGaN nanorods have attracted increasing amounts of attention for use in ultraviolet (UV) optoelectronic devices. Here, self-assembled AlGaN nanorods with embedding quantum disks (Qdisks) were grown on Si(111) using plasma-assisted molecular beam epitaxy (PA-MBE). The morphology and quantum construction of the nanorods were investigated and well-oriented and nearly defect-free nanorods were shown to have a high density of about 2 × 1010 cm−2. By controlling the substrate temperature and Al/Ga ratio, the emission wavelengths of the nanorods could be adjusted from 276 nm to 330 nm. By optimizing the structures and growth parameters of the Qdisks, a high internal quantum efficiency (IQE) of the AlGaN Qdisk nanorods of up to 77% was obtained at 305 nm, which also exhibited a shift in the small emission wavelength peak with respect to the increasing temperatures during the PL measurements.

Keywords