Journal of Biomedical Physics and Engineering (Aug 2021)

Liver Segmentation in MRI Images using an Adaptive Water Flow Model

  • Marjan Heidari,
  • Mehdi Taghizadeh,
  • Hassan Masoumi,
  • Morteza Valizadeh

DOI
https://doi.org/10.31661/jbpe.v0i0.2103-1293
Journal volume & issue
Vol. 11, no. 4
pp. 527 – 534

Abstract

Read online

Background: Identification and precise localization of the liver surface and its segments are essential for any surgical treatment. An algorithm of accurate liver segmentation simplifies the treatment planning for different types of liver diseases. Although liver segmentation turns researcher’s attention, it still has some challenging problems in computer-aided diagnosis. Objective: This study aimed to extract the potential liver regions by an adaptive water flow model and perform the final segmentation by the classification algorithm.Material and Methods: In this experimental study, an automatic liver segmentation algorithm was introduced. The proposed method designed the image by a transfer function based on the probability distribution function of the liver pixels to enhance the liver area. The enhanced image is then segmented using an adaptive water flow model in which the rainfall process is controlled by the liver location in the training images and the gray levels of pixels. The candidate liver segments are classified by a Multi-Layer Perception (MLP) neural network considering some texture, area, and gray level features. Results: The proposed algorithm efficiently distinguishes the liver region from its surrounding organs, resulting in perfect liver segmentation over 250 Magnetic Resonance Imaging (MRI) test images. The accuracy of 97% was obtained by quantitative evaluation over test images, which revealed the superiority of the proposed algorithm compared to some evaluated algorithms. Conclusion: Liver segmentation using an adaptive water flow algorithm and classifying the segmented area in MRI images yields more robust and reliable results in comparison with the classification of pixels.

Keywords