EPJ Web of Conferences (Jan 2021)
STUDY OF THE EIGENVALUE SPECTRA OF THE NEUTRON TRANSPORT PROBLEM IN PN APPROXIMATION
Abstract
The study of the steady-state solutions of neutron transport equation requires the introduction of appropriate eigenvalues: this can be done in various different ways by changing each of the operators in the transport equation; such modifications can be physically viewed as a variation of the corresponding macroscopic cross sections only, so making the different (generalized) eigenvalue problems non-equivalent. In this paper the eigenvalue problem associated to the time-dependent problem (α eigenvalue), also in the presence of delayed emissions is evaluated. The properties of associated spectra can give different insight into the physics of the problem.
Keywords